A Fast Algorithm for Enumerating Bipartite Perfect Matchings
نویسنده
چکیده
In this paper, we propose an algorithm for enumerating all the perfect matchings included in a given bipartite graph G = (V,E). The algorithm is improved by the approach which we proposed at ISAAC98. Our algorithm takes O(log |V |) time per perfect matching while the current fastest algorithm takes O(|V |) time per perfect matching. Keyword: enumeration, enumerating algorithm, perfect matching.
منابع مشابه
Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in Bipartite Graphs
For a bipartite graph G = (V, E), (1) perfect, (2) maximum and (3) maximal matchings are matchings (1) such that all vertices are incident to some matching edges, (2) whose cardinalities are maximum among all matchings, (3) which are contained in no other matching. In this paper, we present three algorithms for enumerating these three types of matchings. Their time complexities are O(|V |) per ...
متن کاملFinding all minimum-cost perfect matchings in Bipartite graphs
The Hungarian method is an e cient algorithm for nding a minimal cost perfect matching in a weighted bipartite graph. This paper describes an e cient algorithm for nding all minimal cost perfect matchings. The computational time required to generate each additional perfect matching is O(n(n + m)); and it requires O(n+m) memory storage. This problem can be solved by algorithms for nding the Kth-...
متن کاملGraphical condensation of plane graphs: A combinatorial approach
The method of graphical vertex-condensation for enumerating perfect matchings of plane bipartite graph was found by Propp (Theoret. Comput. Sci. 303(2003), 267-301), and was generalized by Kuo (Theoret. Comput. Sci. 319 (2004), 29-57) and Yan and Zhang (J. Combin. Theory Ser. A, 110(2005), 113125). In this paper, by a purely combinatorial method some explicit identities on graphical vertex-cond...
متن کاملThe Polynomially Bounded Perfect Matching Problem Is in NC 2
The perfect matching problem is known to be in ¶, in randomized NC, and it is hard for NL. Whether the perfect matching problem is in NC is one of the most prominent open questions in complexity theory regarding parallel computations. Grigoriev and Karpinski [GK87] studied the perfect matching problem for bipartite graphs with polynomially bounded permanent. They showed that for such bipartite ...
متن کاملApplications of graphical condensation for enumerating matchings and tilings
A technique called graphical condensation is used to prove various combinatorial identities among numbers of (perfect) matchings of planar bipartite graphs and tilings of regions. Graphical condensation involves superimposing matchings of a graph onto matchings of a smaller subgraph, and then re-partitioning the united matching (actually a multigraph) into matchings of two other subgraphs, in o...
متن کامل